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Abstract

This study presents direct numerical simulations of natoa-
vection for air Pr = 0.709) in a vertical channel driven by
differentially heated walls at Rayleigh numbei@a) up to
2.0x 10’. The present data is validated with that from Ver-
steegh and Nieuwstad®][ for Ra = 5.0 x 16f. Using the
present data for highdRa, we appraise and compare the var-
ious proposed scaling laws for the mean temperature defect,
Th—T, and the streamwise velocity, by Versteegh and Nieuw-
stadt P], Holling and Herwig P] and Shiri and George6]
(cf. George and Cappl]). For the mean temperature pro-
file, the present data supports the inner temperature gcalin
T = [|fw|3/(gBa)]¥/4, proposed by all the three studies, where
fw is the heat flux at the wally is the gravitational accelera-
tion, B is the thermal expansion coefficient amds the heat dif-
fusion coefficient. Using compensated temperature gréslien
constants are found for the wall function for mean tempeeatu
which takes the form of a power-law:
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wherez is the distance in the wall-normal direction ahds
the inner length scale, defined y3/(gB|fw|)]Y/*. For the
mean velocity profile, we found that the inner velocity scale
u; = (gB| fw|h)/3, proposed by Shiri and Georgé]collapses
the velocity profiles in the near-wall region. Here, we define
as the channel half-width.

Introduction

Statistics describing turbulent natural convection in divel

channel have, in the past, been approached through various

forms of scaling analysis (e.g. George and Cafjp$hiri and
George §], Holling and Herwig ], Yuanet al. [10]), and is
typically followed by validation with experimental and DNS
data (e.g. Versteegh and Nieuwsta®l) [ Hereafter, with the
exception of Yuaret al., we refer to the authors as GC, SG, HH
and VN respectively.

To date, the DNS data by VN fdRa up to 50 x 10 and the ex-
perimental data by Tsuiji and Nagar8) for Raup to 25 x 1011

are the known highed®a data available for comparison. How-
ever, as DNS enables a more straightforward collation of dat
for higher-order statistics, this paper focuses on progdNS
data forRa > 5.0 x 10° to validate proposed scaling laws and
asymptotic theories. Furthermore, SG argues that, in doder
deductions of asymptotic wall functions to be criticallyaky
ated, channel flow should ideally have a ratio of outer totinne
length scaledh/l;, greater than 10. We use this ratio as a start-
ing point for comparison. For the present datdl; is in the
range of 19-62.

Background

Governing Equations

For the present study, we adopt the Boussinesq approximatio
(constant fluid properties except buoyancy, which is a fonct

Cold

Figure 1: Diagram of natural convection in a vertical chdnne

of temperature) for fully developed turbulent natural ceswv
tion flow driven by the temperature difference between the tw
walls, AT. Here, AT = T, — T¢, whereT,, andT; are defined as
the temperatures of the ‘hot’ and ‘cold’ walls respectivetpr

all simulations in this study, the ‘hot’ wall is defined as teé
channel wall (figurdl). Ty is defined as the average temperature
across the channel. The relevant measure of the flow, ansdogo
to the Reynolds number, is the Rayleigh numBay defined as
Ra = gBATH?3/(va), whereg is the acceleration of gravity,

is the viscosityp is the thermal diffusivity ang is the thermal
expansion coefficientv, a andf3 are properties of the fluid in
the channel. The streamwise, spanwise and wall-normat-dire
tions arex, y andz respectively, and the channel full widthhs

(= 2h). The mean equations of motion can be written as:

0 d_z(\,_dzfuw)wB(TfTo), D)
d /. dT
0 — d_z(o‘E*W/T) @

(cf. GC) where the mean flow is averaged over time as well as
the streamwise and spanwise direction. The overbar deti@tes
ensemble average of the quantities while the fluctuatingtitua
ties are denoted by a prime. The Reynolds stresauisy and

the turbulent heat flux isw'T’.

Simulation Details

The governing equations are solved numerically over a cempu
tational domain size defined ly x Ly x Lz, with resolutions

Ny X Ny x Nz = 432x 216x 96 for Ra up to 50 x 10P (cf. VN)
andny x ny x n; = 768x 384 x 192 forRa= 2.0 x 10’. We
have determined that grid spacings/l; of O(1) are sufficient

to resolve the small scales. The simulation time is defined as
tsim/teddy = ((9Bfwh)Y/3 -tsim) /h, (see table2:SG), wheresim

is the length of time used to record statistics. Tablests the
simulation parameters in this study.

The governing equations are spatially discretised usiadily



Ra Ly/h Ly/h AX* Ay* AzL  tsim/teddy
54x10° 24 12 11 11 06 120.0
20x10° 24 12 16 16 1.0 147.1
5.0x 100 24 12 22 22 13 117.3
20x10"7 24 12 19 19 1.0 12.8

Table 1: Simulation parameters for this study. The cell-grid
sizes,Ax*, Ay* andAz; are scaled by the inner length scale,
li = [a®/(gB|fw|)]*/4. The wall normal gridsizé\z; is mea-
sured at the channel half-widtlAt the time of writing, the high-
estRa appears not to have fully convergeg/teqdy < 1000), but the
results are included nonetheless.)

conservative fourth-order staggered scheme of Moringhi

al. [4] and marched in time using the low-storage third-order
Runge—Kutta scheme of Spalattal. [7]. The velocity field is
projected onto a divergence-free field after each RungeaaKut
stage via the fractional-step method (e.g. Kim and M@. [
Grid spacings in the streamwise and spanwise directions are
uniform, and the wall-normal spacings utilise a cosinetstre

ing grid.

Comparison with Published DNS Data

The results of the present DNS are validated against theoflata
VN. Flow statistics forRa = 5.0 x 1f are shown in figureg
and3.
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Figure 2: DNS temperature and velocity dataRar=5.0x 10°
by VN [9] (o) compared with the present data (—).

Figure 3: DNS turbulent velocity data féta = 5.0 x 10° by
VN [9] (o) compared with the present data (—).

In the mean temperature plot (figub), the present data
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Figure 4: DNS cross—correlated turbulent velocity datd=fne
5.0 x 10° by VN [9] (o) compared with the present data (—).
The inset figure shows DNS data foth up to 0.03.

matches well with the data from VN. However, for the mean
velocity (figure 2a), the streamwise velocity data from the
present simulation exhibits a higher peak velocity, zh (=
0.1, u/(a/h) ~ 930) compared to data by VN at=(0.1, ~
900). Similarly for the turbulent streamwise velocity (figu

3, top curve), the present simulation data peak at the centre
of the channel atz/h ~ 1.0, Uu//(a/h)? ~ 4.2 x 10°) com-
pared to data by VN atxf 1.0, ~ 3.7 x 10P). The spanwise,
wall-normal and cross—correlated turbulent velocity fhations
(WW /(a/h)?) matches to that of VN (the latter shown in figure
4). At the time of writing, the cause of the difference for the
streamwise velocity data is still unknown but, in generhg t
present simulations agree qualitatively with the DNS ddta o
VN.

Analysis of High Rayleigh Number Results

Temperature Profile

We begin by describing the inner—outer scaling approach
adopted by the various authors named above, which defines an
inner layer of the flow close to the wall and an outer layer at th
core of the channel. Equatio)(can be integrated, giving

@)

which describes a characteristic heat flux consfgrquivalent

to the wall heat fluxgy flowing from left to right divided by
densityp and specific heaf,. The same constant heat flux is
felt by both inner and outer regions of the flow. This implieatt

the characteristic constafiy is independent of location and can
be deduced as a characteristic parameter for describirftptte

in the channel. From equation$)@nd @), the parametera,

v, gB andh, are used to form the necessary scales (cf. GC). The
inner scaling for temperature and length proposed by VN, HH
and SG (cf. GC) are summarised in taBle

All three studies propose similar inner and outer lengthesca
as well as the inner temperature scale. However, there fre di
ferences in the choice of the velocity scales and the outer te
perature scales. These differences potentially arose fhem
limited availability of highRa data to date.

Interestingly, but not surprisingly, the wall functionsoppsed

are different: VN and SG (cf. GC) propose a power-law func-
tion based on dimensional arguments positing the existehce
a buoyant sublayer while HH proposes a logarithmic law us-
ing the gradient-matching approach. Of the three, SG did not
determine a constant for their wall function.



VN [9] HH [2] SG[6]
Inner scaling
U (9Bl fwla)™* (9Bl fwla)¥4Pr=t (g fulh)?/3
: M 1/4 M 1/4 M 1/4
T (o) (g ) (5w )
I o3 1/4 o3 1/4 o3 1/4
! (gﬁ\fw\> (gﬁ\fw\> (gBlfw|>
Outer scaling
U (oBfwlM)Y3  (gBlfwla)¥4Pr=  (gB|fu|h)Y/2
1,21 1/3 12 /4 112\ 3
To ( gph ) < gBal ) < gph )
lo h h h

Table 2: Comparison of inner and outer layer scales.

Using the present data, we now determine the constants for
the temperature wall function proposed by SG, which takes th
power-law form:

~1/3
Th—T z
=—c (= —cy(P 4
——a(F) e, @
wherec; is a constant yet to be determined andPr) is a
Prandtl number dependent constant. Preseailr) is con-
stant forPr = 0.709. By differentiating equatiordj, we obtain
dT> C1 _
W = (), (5)

where T* = (T = T)/T = (Th — T)/[| fw/3/(gBa)]¥* and
7* =z/li =z / [03/(gB| fw|)]Y/%. To estimate the constants
andcp, we rewrite equationsdj and 6) into diagnostic quanti-
ties,c; = 32°(4/3dT* /dz* and ¢, = —32°dT*/dz* — T*,
similar to the approach by Moset al.[5]. Assuming that the
power law is validc; andcy should exhibit linearity in a region
of ¥, which we estimated in figurgfor 1 < z* < 3.
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Figure 5: A plot of compensated temperature gradient tardete
mine the universal constants andc,.

Hence, we determine the constants to bg= 3.6 andc, =
—4.5, giving the temperature wall function with newly fitted

constants: 13
Th — AN
=-36|( - 4.5.
Ti <|i ) -
In summary, the wall functions are listed in taBle

T

(6)

VN [9] (cf. GC [1])
HH [2]
SG [6]

—4.2(z°)" Y3450
0.4log(z*)+1.9
~3.6(z¢)" Y3445+

Table 3: Temperature wall function$,” (z*).
stants are determined from present data.

For (*), con-

Figure6 compares the fit of the respective wall functions to the
present DNS data. As expected, the linear region near tHe wal
T* = z* fits the profiles exactly, up te* ~ 1. However, we
found that each outer wall functions fit different rangeshs t
temperature profile. The logarithmic equation of HH appéars
fit the outer region & z* < 30 while the power-law equation
of VN fits the lowestRa data very well. In contrast, the power-
law function with new constants (a variation from VN and GC)
shows a good fit to the DNS data fram ~ 1 to z* ~ 30 with

a slight deviation between®2< z* < 10 and it appears that the
trend will continue asymptotically.
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Figure 6: DNS temperature data scaled with inner temperatur
scale,T;, and inner length scalg, showing general agreement
with new temperature wall function forg z* < 30, with slight
deviation between.8 < z* < 10.

Velocity Profile

Here, we shall perform a straightforward comparison and ap-
praisal of inner velocity scales using the present datadtti-a
tion, and of particular interest, is the asymptotic velpgito-

file theory proposed by SG which we also used to analyse the
present data. For reference, the velocity scales are susedar

in table2.

VN and HH approached the problem of inner velocity scaling
on the assumption that local effects drive the flow close éo th
wall, so on dimensional grounds; = (gB| fw|a)Y/4. Here, the
subscripfl identifies a velocity scale based on thermal diffusiv-
ity, a. Plotting the data from this study witlgt gives figure?.

In the region close to the walt{ < 1) where the velocity pro-
files are expected to collapse, we observe a systematictdepar
with increasingRa.

SG, however, argues that asymptotically, the buoyancyeed
flow away from the wall drives the velocity in the vicinity of
the wall. In other words, the outer velocity scaling, =
(9B fw|h)Y/3 matches the inner velocity scaling, for suffi-
ciently highRa values. The subscrigt denotes dependency
on the outer flow region. This is apparent in fig@ewvhere a
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Figure 7: DNS velocity data scaled with inner velocity scale
uit, and inner length scalg, showing systematic increase with
higherRa.
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Figure 8: DNS velocity data scaled with inner velocity scajg
and inner length scald, showing collapse of velocity profiles
for z¢ up to Q3.

collapse of the velocity profiles is apparent for< 0.3.

In the asymptotic analysis of the inner velocity scale, S@ an
GC theorised a proportional relationship between the vtgloc
scale,ugn, and the wall shear velocity;, asRa — o, that is,

the ratiou; /ugn approaches a constant for sufficiently high
With the present data, we calculaig/ug, and a plot against
log(Ra) is shown in figured. From the figure, we observe a
decreasing trend that appears to approach a constant. ughis s
gests that perhaps, the presBatis not sufficiently high to test
the theory proposed by SG and GC. This is subject to ongoing
investigation.

Conclusions

DNS for turbulent natural convection in a vertical chanral f
Ra up to 20 x 107 was conducted, and data f&a = 5.0 x

10° was validated with published results from Versteegh and
Nieuwstadt §]. Using the present data, new constants for the
asymptotic temperature wall function have been deternamed
appears to support a power law. For the mean velocity profile,
the data for highRa collapses with the velocity scale proposed
by Shiri and Georgeq], which supports the theory that the near
wall flow regime is dependent on buoyant effects away from
the wall. From this finding, Shiri and Georg6]s proposed
relationship between the wall shear velocity, and the veloc-

ity scale,uqn at higherRa has interesting implications: a log-
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Figure 9: A plot ofu; /ugh versus lodRa showing potential con-
vergence with increasinga.

arithmic relationship for the mean velocity profile. Thistle
subject of our ongoing study.
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